

DPP – Thermal Expansion

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/86

Video Solution on YouTube:-

https://youtu.be/IQdONu4hPfI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/25

- Q 1. The co-efficient of linear expansion of iron is 11/180 of volume coefficient of expansion of mercury which is 18×10^{-5} /°C. An iron rod is 10m long at 27 °C. The length of the rod will be decreased by 1.1mm then the temperature of the rod changes by:
 - (a) 0 °C

(b) 10 °C

(c) 20 °C

- (d) 170 °C
- Q 2. At 50 °C, a brass rod has a length 50 cm and a diameter 2 mm. It is joined to a steel rod of the same length and diameter at the same temperature. The change in the length of the composite rod when it is heated to 250 °C is: (Coefficient of linear expansion of brass = 2×10^{-5} /°C, coefficient of linear expansion of steel = 1.2×10^{-5} /°C)
 - (a) 0.28 cm

(b) 0.30 cm

- (c) 0.32 cm
- (d) 0.34 cm
- Q 3. A rod of length 2 m is at a temperature of 20 °C. find the free expansion of the rod, if the temperature is increased to 50 °C:
 - $(\alpha = 15 \times 10^{-6})^{\circ}$ C)
 - (a) 0.9 mm
- (b) 9 mm

(c) 9 cm

- (d) 1.9 mm
- Q 4. Density of substance at 0 °C is 10 gm/cc and at 100°C, its density is 9.7 gm/cc. The coefficient of linear expansion of the substance will be:
 - (a) 10^2

(b) 10^{-2}

(c) 10^{-3}

- (d) 10^{-4}
- Q 5. The coefficient of volume expansion of a liquid is 4.9×10^{-4} /K. Calculate the fractional change in its density when the temperature is raised by 30 °C:
 - (a) 1.5×10^2
- (b) 1.5×10^{-2}
- (c) 1.5×10^{-3}
- (d) 1.5×10^{-4}
- Q 6. A steel tape 1m long is correctly calibrated for a temperature of 27 °C. The length of a steel rod measured by this tape is found to be 63.0 cm on a hot day when the temperature is 45 °C. Coefficient of linear expansion of steel = 1.20×10^{-5} /K. what is the actual length of the steel rod on that day?
 - (a) 63.0136cm
- (b) 63.2134cm
- (c) 63.1526cm
- (d) 63.3136cm

Physicsaholics

Q 7. A rod has variable co-efficient of linear expansion $\alpha = \frac{x}{5000}$ (x is in metre). If length of the rod is 1m. Determine increase in length of the rod in (cm) on increasing temperature of the rod by 100 °C:

(a) 1.01

(b) 0.1

(c) 0.01

(d) 1

Q 8. The coefficient of linear expansion of a crystal in one direction is α_1 and hat in every direction perpendicular to it is α_2 . The coefficient of cubical expansion is:

(a) $\alpha_1 + \alpha_2$

- (b) $2\alpha_1 + \alpha_2$
- (c) $\alpha_1 + 2\alpha_2$
- (d) None of above

Q 9. Coefficient of volume expansion of mercury is 0.18 × 10⁻³/°C. If the density of mercury at 0 °C is 13.6 g/cc then its density at 200 °C is:

- (a) 13.11 g/cc
- (b) 52.11 g/cc
- (c) 16.11 g/cc
- (d) 26.11 g/cc

Q 10. The real coefficient of volume expansion of glycerin is 0.000597/°C and linear coefficient of expansion of glass is 0.000009/°C. Then the apparent volume coefficient of expansion of glycerin in a container of glass is:

- (a) 0.000558 /°C
- (b) 0.00057 /°C
- (c) 0.00027/°C
- (d) 0.00066 /°C

Q 11. The coefficient of linear expansion of a metal is 1×10^{-5} /°C. The percentage increase in area of a square plate of that metal when it is heated through 100 °C is:

(a) 0.02%

(b) 0.1%

(c) 0.001%

(d) 0.2%

Q 12. A metal plate of area $1.2 m^2$ increases its area by $2.4 \times 10^{-4} m^2$ when it is heated from 0 °C to 100 °C. The coefficient of cubical expansion of the metal expressed in per °C is:

- (a) 2×10^{-6}
- (b) 4×10^{-6}
- (c) 6×10^{-6}
- (d) 3×10^{-6}

Q 13. The length of a metal rod at 0 °C is 0.5 m. When it is heated, its length increases by 2.7mm. The final temperature of rod is (coeff. Of linear expansion of metal = 90×10^{-6} /°C):

(a) 20 °C

(b) 30 °C

(c) 40 °C

(d) 60 °C

Q 14. A liquid with coefficient of volume expansion γ is filled in a container of a material having coefficient of linear expansion α . If the liquid overflows on heating, then:

(a) $\gamma = 3\alpha$

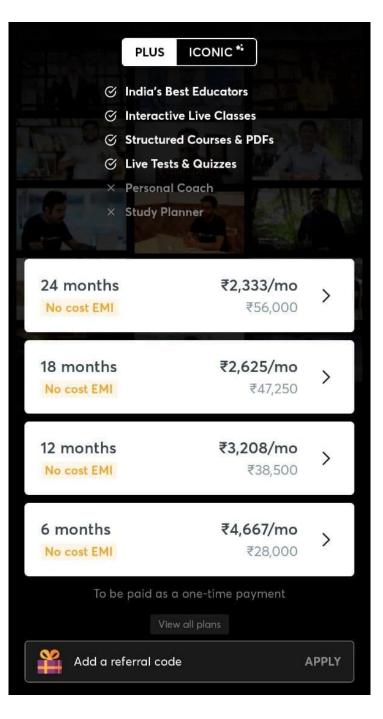
(b) $\gamma > 3\alpha$

hysicsaholics

(c) $\gamma < 3\alpha$

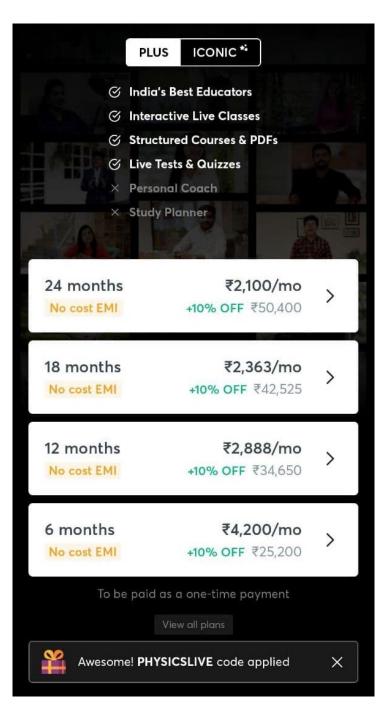
- (d) $\gamma = \alpha^3$
- Q 15. At 20 °C a liquid is filled upto 10 cm height in a container of glass of length 20cm and cross-sectional area 100 cm^2 . Scale is marked on the surface of container. This scale gives correct reading at 20 °C. Given $\gamma_L = 5 \times 10^{-5}$ /K, $\alpha_g = 1 \times 10^{-5}$ /°C. The actual height of liquid at 40°C is:
 - (a) 10.01 cm
- (b) 10.006 cm

(c) 10.6 cm


- (d) 10.1 cm
- Q 16. A uniform metal rod is used as a bar pendulum. If the room temperature rises by 10° C, and the coefficient of linear expansion of the metal of the rod is 2×10^{-6} per °C, the period of the pendulum will have percentage increase of:

time period of pendulum is given by $T = 2\pi \sqrt{\frac{l}{g}}$

- (a) -2×10^{-3}
- (b) 1×10^{-3}
- (c) -1×10^{-3}
- (d) 2×10^{-3}



Q.1 b	Q.2 c	Q.3 a	Q.4 d	Q.5 b
Q.6 a	Q.7 d	Q.8 c	Q.9 a	Q.10 b
Q.11 d	Q.12 d	Q.13 d	Q.14 b	Q.15 b
Q.16 b				

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

NEET & JEE Main Physics DPP – Written Solution

DPP- Thermal Expansion By Physicsaholics Team

La Coefficien of lineage expansion of bron.

T, = 27°C

J1 = 10 mg

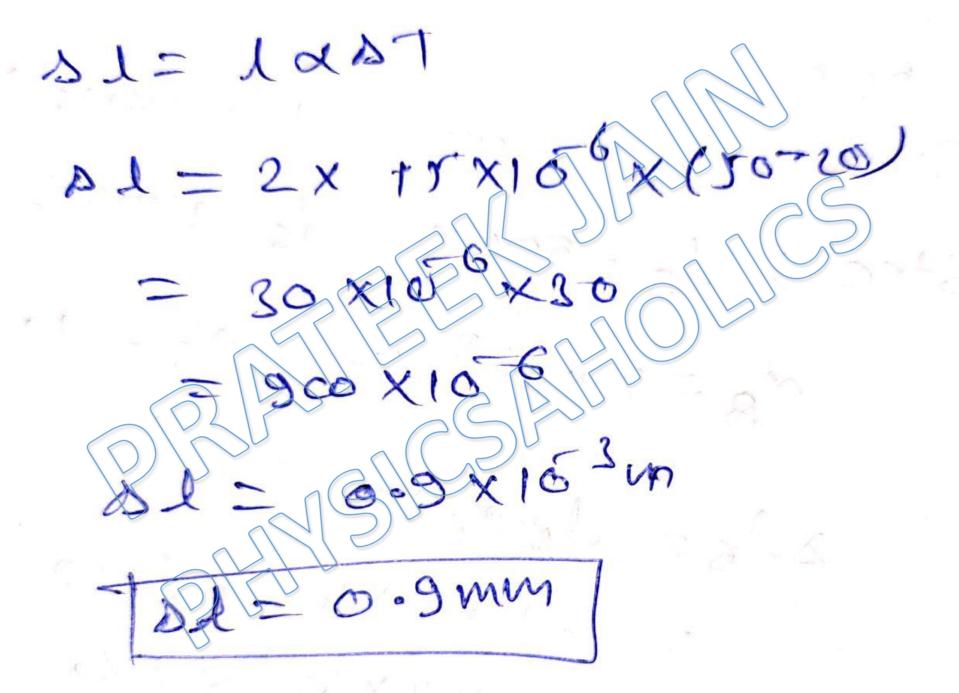
DIE = 1.1mm (decreases)

DI= 1d At

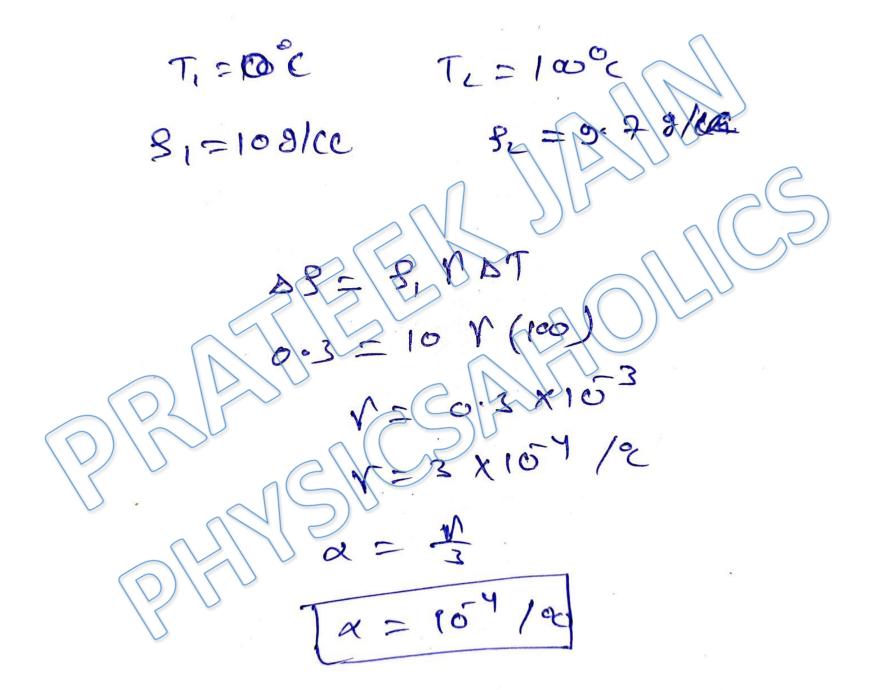
Dd= load

D1=1.1mm

111 X 10 = 10 X 11 X 10 6 DT


10T=10°

Ans. b


Oth 50°C

Results;
$$l_{B} = 50 \text{ cm}$$
 $d_{B} = 2 \text{ mm}$; $l_{B} = 2 \text{ mm}$

Steed; $l_{S} = 50 \text{ cm}$ $d_{S} = 2 \text{ mm}$; $l_{S} = 2 \text{ mm}$
 $l_{B} = 2 \times 10^{-5}$ /°C $l_{S} = 2 \times 10^{-5}$ /°C

Ans. a

$$V = 4.9 \times 10^{-4} / K$$

$$\Delta P = 9 \text{ NDT}$$

$$\frac{\Delta P}{9} = V \text{ DT}$$

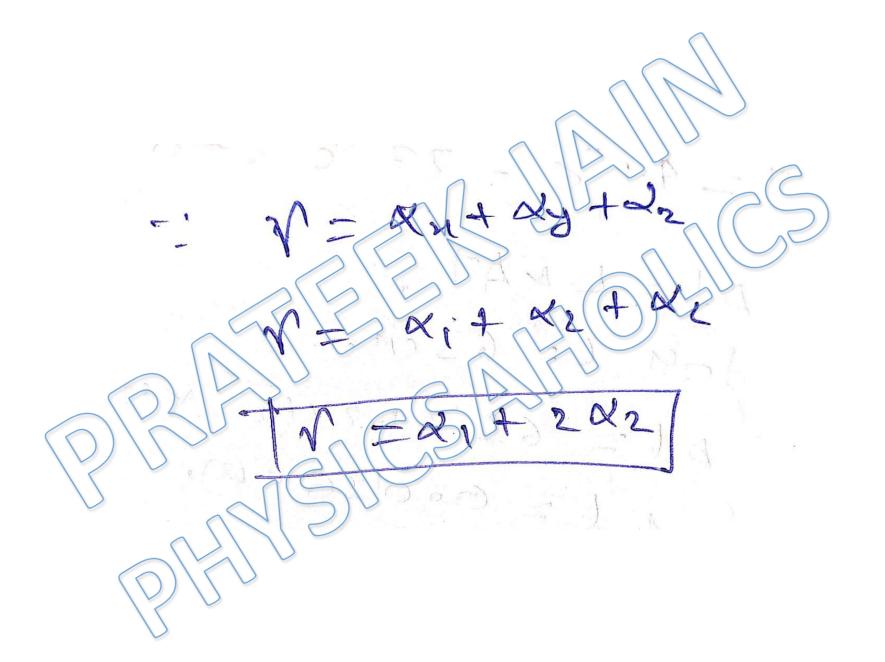
$$\frac{\Delta P}{9} = 4 \text{ arctional change in }$$

$$\frac{\Delta P}{9} = 4.9 \times 10^{-4} \times 30$$

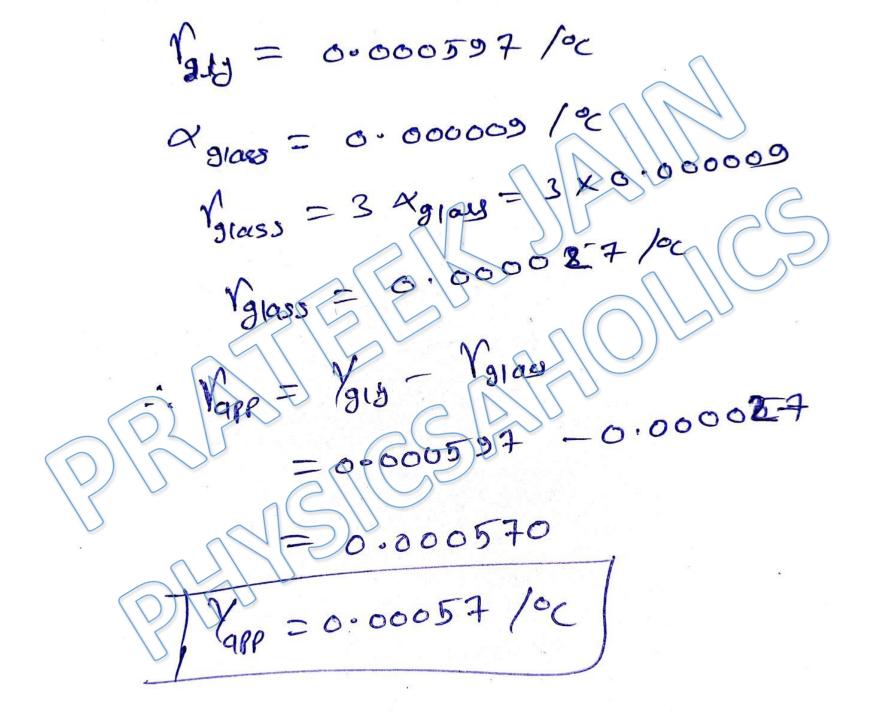
$$\frac{\Delta P}{9} = 4.9 \times 10^{-4} \times 30$$

$$\frac{\Delta P}{9} = 4.9 \times 10^{-4} \times 30$$

$$\frac{\Delta P}{9} = 1.9 \times 10^{-2}$$

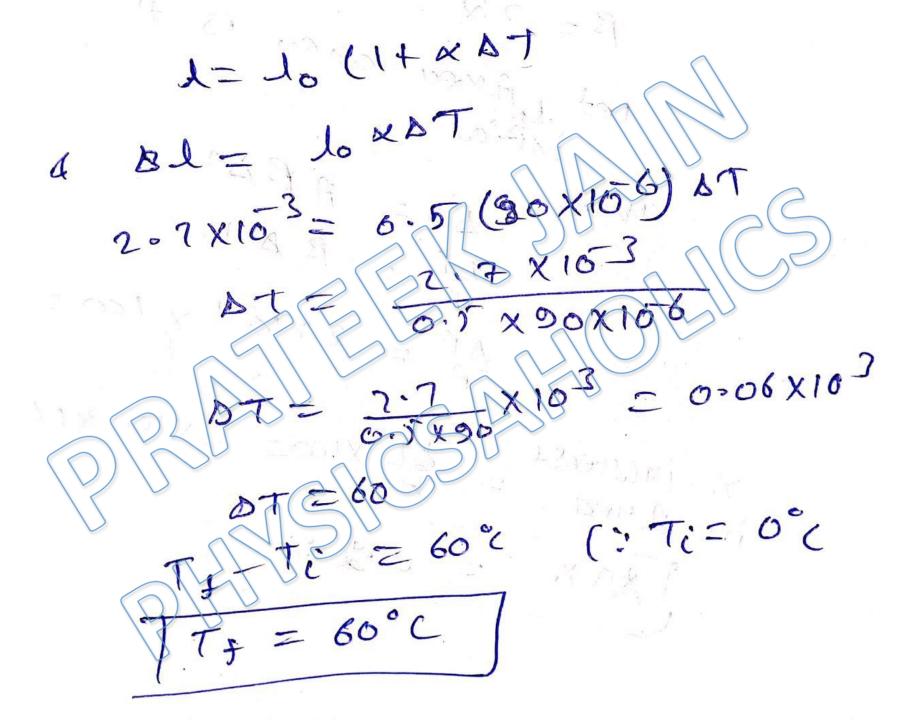

$$\frac{\Delta P}{9} = 1.9 \times 10^{-2}$$

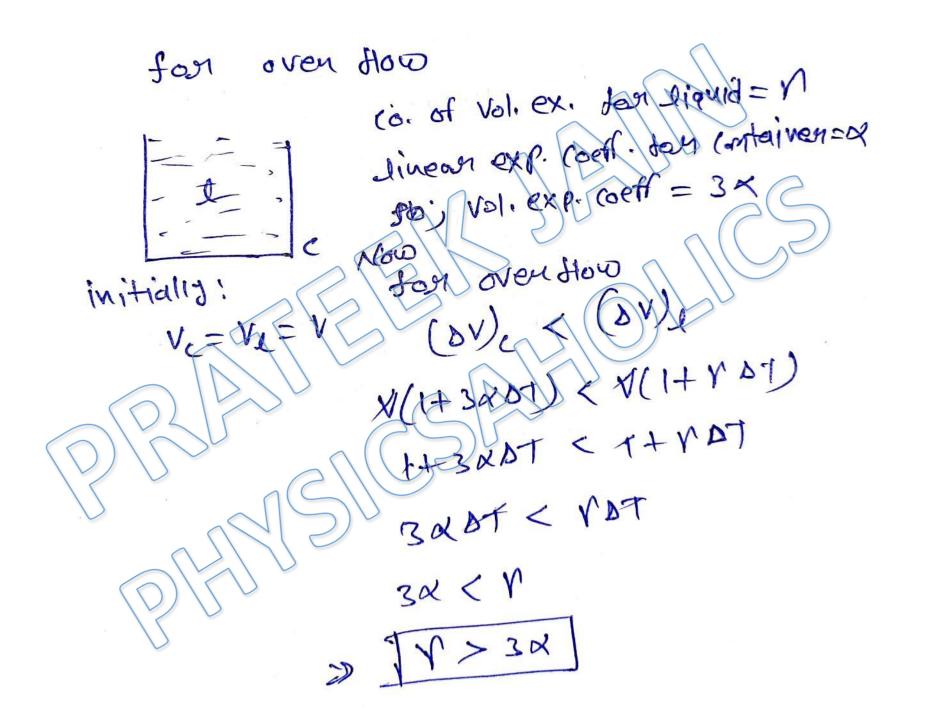
Ans. b


AT=45°C-27°C=418°C Solution: 6 DI=LXAT

dos L=63 pm, L = 63.6136 cm

Ans. a




Ans. a

Ans. b

x=1x155/0c Solution: 11 B= 22 = 2 × 10 6/ Let LAMEN agreen 15/2 initial AA X100= 2 X 10 3 X 1 60 = 2 X 10 1 in concess Arrea

Ans. b

xg = 10x105/00 Solution: 15 Bg = 2x105/°C Chas-settin Anea of containon at Temp 40 27=? BA = A (B) BT = 100 X Z X 10 x 20 DA = 4x103x105 final Anea High Hon Liquid initial volume = Vo = 100×10=1000 cm3 h = 1001 = 10.00 53 cm Th'= 10.006 cm

T =
$$2\lambda \int \frac{1}{9}$$

g is constant

The following and 2×10^{6}

At 100 c

bottom formula of
$$\frac{\partial T}{\partial t}$$

$$\frac{\partial T}{\partial t} = \frac{1}{2} \propto \Delta \Omega = \frac{1}{2} \times 2 \times 10^{\circ} \times 10 = 10^{\circ}$$

$$\frac{\partial T}{\partial t} = \frac{1}{2} \times 10^{\circ} = 10^{\circ}$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/86

Video Solution on YouTube:-

https://youtu.be/IQdONu4hPfI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/25

@Physicsaholics

@Physicsaholics_prateek

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS